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side-channel emissions
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ABSTRACT

The low-cost, flexible nature of Internet-of-Things (IoT) hardware has resulted in widespread usage in a variety
of applications from smart-home systems to industrial process-regulation controllers. As the number of network-
connected IoT devices has proliferated, they have become increasingly likely to be the target of widespread
cyber-attacks. Since these devices are often low-resource, embedded or bare metal systems, conventional profiling
techniques used by Personal Computers (PCs) and workstations have become highly impractical means for
security. As a result, an IoT device could provide intruders with an unprotected backdoor into a network.
Effectively protecting IoT hardware requires that alternative security protocols be developed and utilized to
protect the IoT and the networks they are integrated with. One potential way of improving the security of IoT
devices is by monitoring their side-channel emissions to observe device behavior. As these devices operate, they
will produce multi-spectral phenomenon, or side-channel emissions, that correlate with program execution. By
combining spectral analysis techniques with powerful machine learning algorithms, side-channel emissions can be
utilized to bolster IoT device security and deny an intruder access to the network. This paper will review current
state-of-the-art techniques used to monitor and classify the behavior of IoT devices. The paper will conclude
by discussing several real-world applications presented in literature that have been shown to benefit from these
techniques.

Keywords: Anomaly Detection, Side-Channel Analysis, Feature Extraction, Machine Learning, Deep Learning,
Classification, Graph Theory

1. INTRODUCTION

The Internet of Things (IoT) consists of a rapidly increasing number of low-cost, low-resource computing devices
that leverage widespread connectivity for automation across consumer, industrial, and government sectors. As-
pects such as cost and ease of use have made IoT devices popular among amateurs and professionals alike. While
IoT devices enable connectivity and automation in many systems, they also present major security concerns due
to their low-resource nature. Conventional security techniques, such as profiling, are generally executed directly
on system hardware in order to provide a computer with crucial information about its own performance. How-
ever, the characteristically low-resource nature of IoT devices has made it so conventional security techniques
are incompatible with their architecture.1 Being unable to monitor device performance internally leaves IoT
devices and their networks vulnerable to attacks. Therefore, as the number of cyber-attacks on industry and
government resources has increased in recent years, it should come as no surprise that IoT devices are targets.
The inability of IoT devices to integrate cyber-defense into their firmware leaves them relatively unprotected
backdoors to their respective networks.1

An alternative approach to conventional security techniques is cyber-physical sensing. Cyber-physical sensing
leverages unintended device emissions to determine which operations are executing on a device. Often, this
approach requires a suite of sensors to monitor device emissions. These emissions, which correlate with the
behavior of the program being executed, can provide valuable markers to classifying a device’s behavior.2 For
example, every bit-flip, switch of a transistor, or change in electrical current path can produce unique acoustic,
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electrical, and thermal signatures.3 The use of sensor systems with fine-tuned sensing parameters, such as
bandwidth and imaging resolution, enables the detection of even the most minute change in these emissions.
Strong signal processing and machine/deep-learning algorithms are generally applied in order to classify the data
where the resulting classification can indicate whether or not a program has deviated from its intended mode
of operation. As such, cyber-physical sensing enables remote monitoring and detection of anomalous behavior,
lending themselves to be potentially viable solutions to the security challenges of IoT devices.

While many of the approaches to cyber-physical sensing utilize the same basic philosophy; measure, collect,
process, and classify, they differ greatly in their execution and architecture. The remainder of this paper will be
spent investigating the various ways that researchers are using cyber-physical sensing to enhance the security of
IoT devices utilizing the electromagnetic (EM) sensing modality.

2. SIDE-CHANNEL EMISSION LOCALIZATION & MEASUREMENT

Side-channel emissions from IoT devices serve as a source of information about device operation when signals
can be effectively identified and measured. A primary challenge involves determining a measurement probe
position which provides the strongest RF side-channel signals while mitigating interference from external noise
and interference.4 Effective techniques in localization and measurement together can be utilized to produce the
highest quality EM signals for IoT behavior classification.

2.1 LOCALIZATION

Due to the unintended nature of EM side-channel emissions, there are no predictable locations for ideal signal
measurement either on-board or on-chip in IoT devices. Traditional EM side-channel localization techniques are
time-intensive, requiring a full grid search over the surface of an IoT device to localize the strongest EM signal
sources.4 In order to reduce localization times, Werner et al. developed an efficient localization algorithm to
reduce the overall number of measurements required for magnetic source localization.4,5 The proposed algorithm
solves a forward-backward optimization problem using a magnetic field model and measurements taken around
the edges of the device to identify one or more sources.4 Experimental validation of the algorithm demonstrates
the ability to successfully localize on-board and on-chip sources for FPGA and IoT devices when one or more
sources are present.5

Although raw EM signal strength is an effective metric for localizing signal sources, simple power metrics
such as the root-mean-squared (RMS) amplitude of signals can be biased by background signals and noise.6 An
alternative approach to determining ideal measurement locations on-board IoT devices is classifier performance
evaluation. Riley et al. approaches source localization by performing a grid search above the processor and
training a Support-Vector Machine (SVM) on the collected traces from each grid location to find the location
with the lowest probability of misclassification. This method is effective in localizing sources with minimal
interference as the SVM error metric will provide degraded results when high levels of noise and interference are
present.6–8

2.2 SIDE-CHANNEL MEASUREMENT

A primary challenge in EM side-channel measurement is the inherent lack of signal strength. Typically, the
Signal-to-Noise Ratio (SNR) is used to quantify signal strength, but the traditional definition does not account
for sources of noise other than thermal noise. Juyal et al. establishes a definition of SNR for EM side-channels
by considering the noise to be a combination of constant thermal noise and noise generated by the processor
which reduces in strength following the propagation equation. Experimental measurements of EM side-channel
emissions are shown to validate this SNR model providing insight on how distance effects side-channel measure-
ment quality.9 Furthermore, Zajic et al. investigates propagation mechanisms of EM side-channels to model
path loss behavior in the near-field and far-field. Experimental measurements of Amplitude Modulated (AM)
carriers along with upper and lower side-bands are found to be in agreement with the proposed propagation loss
model.10

Approaching side-channel measurement with a better understanding of specific SNR characteristics, antenna
design and characterization are considered to increase measurement SNR.9,11–13 Graham et al. establishes
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a characterization method for near-field probes as antenna characteristics impose the greatest limitations on
signal sensitivity and frequency response for EM side-channel measurement. Using the proposed measurement
method, multiple near-field probes are characterized to determine peak operating frequencies.13 Juyal et al.
approaches the SNR problem through directive antenna design as a means to increase signal strength and
mitigate interference. A circular disc antenna design is presented which achieves a peak gain of 19 dBi while
operating in the TM12 mode.9 The antenna design problem for side-channel measurement is further considered
by Adibelli et al. in which a non-uniform helical antenna design is realized. This design is shown to provide
2-3 dB more directivity than optimal uniform helix designs of the same length.11,12 These improvements in
antenna gain for traditional antenna designs increase measurement capability while maintaining antenna size.
Together, these advancements in antenna characterization and design permit more-robust measurement of EM
side-channels which, in turn, aid in the feature identification and extraction process.

3. FEATURE IDENTIFICATION & EXTRACTION

The use of machine learning algorithms is essential for processing the large volumes of side-channel emissions
data produced by IoT devices. In order to utilize these algorithms effectively, refined feature identification and
extraction procedures are crucial. Furthermore, in instances where program binaries are available, it is possible
to gain additional insight about features and, potentially, modify programs in a manner conducive to feature
extraction.

3.1 Feature Identification

A key component of side-channel analysis is to identify features which carry information about the underlying
source phenomena. From an information theory standpoint, not all side-channel emissions carry information
about the internal processor states. Yilmaz et al. examines processor instruction execution to quantify infor-
mation and channel capacity.14–16 Through analysis of a worst case scenario where the program is specifically
designed to leak information about the device behavior, Yilmaz et al. determined the information capacity to
be 1.405 bits/symbol.16 Yilmaz et al. also approached side-channel analysis through a communications per-
spective by modelling the side-channel emissions as a Pulse Amplitude Modulation (PAM) signal. From this
model, the channel Power Spectral Density (PSD) and Bit Error Rate (BER) bounds are established for a covert
side-channel with jitter.17

Examination of the structure of side-channel signals in the frequency domain provides insight into clock
frequencies/harmonics as well as the modulation of events onto such carriers. Sehatbakhsh et al. identifies
frequencies relative to the device clock frequency and harmonics which correspond to periodic activity in programs
(i.e. loops). By determining the per-iteration execution time for each loop for a given processor architecture and
instruction set, it is possible to estimate the offset frequency to be the frequency corresponding to the execution
period.18 Prvulovic et al. proposes a method for finding Amplitude-Modulated (AM) and Frequency-Modulated
(FM) EM side-channel emissions. The assignment of a confidence level and estimated Signal-to-Noise (SNR)
ratio to each identified AM or FM feature serves as a metric for choosing potential features and disregarding
others.19 Wang et al. builds upon this work and presents an algorithm for automatically finding carriers of AM
emanations in the EM spectrum.20

3.2 Feature Extraction

Throughout literature, selection of signals in the frequency domain is commonly used as in input to machine
learning classifiers. This is often due to that fact that feature extraction in the time domain requires precise
alignment of traces such that features remain consistent across all measurements.6 Agrawal et al. searches
the frequency spectrum to determine bandwidths over which device emissions are unique from those of the
environment. Using the optimum frequency band, Discrete Fourier Transform (DFT) based features are extracted
via the Short Time Fourier Transform (STFT) with a sliding window.21 Nazari et al. approaches extraction in
a similar manner by creating Short-Time Spectrum (STS) signatures of the EM emissions spectrum by applying
the STFT to windowed sequences of the continuous time signal. This method allows for the capture of loop
executions and transitions between loops.22 Boggs et al. utilizes all frequency bins over a measured bandwidth
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to extract signatures representative of different processor states. Signatures are determined to be unique through
a similarity metric and signatures with high similarity are merged to produce robust signatures.23

A common challenge in feature extraction is reducing a feature vector to a manageable number of features
for effective application of machine learning. Usage of all bins in the FFT spectrum as a source of features has
several problems including increased computational complexity and the risk of overtraining classifiers.21 Spatz
et al. examines how a feature vector of FFT based features can be reduced using various measurement metrics.
Selection of FFT based features using feature mean and variance is found to be effective in reducing a feature
vector while still maintaining good classification training and testing performance.24 Agrawal et al. utilizes
mutual information as a metric for each of the FFT based features to select a reduced feature set that contains
nearly the same information as the underlying feature vector.21

3.3 Firmware Analysis & Boosting

In instances where program binaries and device architectures are known, it is possible to establish ground truth
data for expected program execution.3,21 Graham et al. emulates the Arduino Uno device architecture to produce
ground truth data for when specified program ”blocks” will execute and the expected duration of each block. The
time information established for each block enables ground truth states to be mapped to emanations occurring
within the specified time window.3 Agrawal et a. takes a similar approach to device characterization through
which micro-benchmarks are derived from device firmware. Micro-benchmarks, which consist of small programs
containing instructions from segments of known code, are selected for instruction segments expected to generate
”loud” analog emissions. These micro-benchmarks contain labels which together can be used for differentiating
between program states.21 Dey et al. uses a cycle-accurate architectural simulator to create ground-truth data
for processor stalls and memory- access events. Collected near-field EM emanations for these events were found
to correspond to the simulated power consumption.25 In each of these instances, access to program binaries
along with device architecture emulation capabilities enables the creation of ground truth data. Unfortunately,
this capability is limited by the speed and complexity of device architectures which can be emulated.3

An alternate approach is taken by Boggs et al. in which start and end times of events are recorded by
the remote host interacting with a networked device. The log of these events provides ground truth data for
when certain events occur and the expected durations of these events.23 Finally, in instances where program
binaries are available for modification, processor states can be made more observable through a technique called
”boosting”. Agrawal et al. discusses how additional code can be inserted into program binaries such that stronger
known emissions will appear at specific points during program execution.21 This type of technique enables easier
state identification and tracking. All of these techniques leverage available resources to make program states
more observable for extraction and classification.

4. MACHINE & DEEP LEARNING APPROACHES

Machine & deep learning provide much of the intelligence behind anomaly detection. Utilizing the features
discussed in the previous section, a number of techniques are used across supervised-, unsupervised-, and deep-
learning to classify IoT device states from EM side-channel emissions.

4.1 Supervised Machine Learning

Techniques in supervised Machine Learning (ML) commonly serve as the basis for classification of side-channel
emissions. Depending on measurement fidelity, supervised ML is used to classify behavior at the instruction
level,26 block level,3 or program/firmware level.27 At the instruction level, Riley et al. extracts the signatures
of each processor cycle and performs background carrier subtraction to obtain Program Counter (PC) and
Instruction Register (IR) waveforms that occur for bit-flips. The resulting waveforms are used to train an SVM
classifier on the hamming distance of the Stack Pointer (SP) and IR.26 Graham et al. utilizes processor emulation
to create blocks of varying length from program code from which corresponding side-channel emissions are used
to train a block classifier. The classifier is built up of multiple binary classifiers which are able to distinguish
between device states at the block level.3 Finally, Fuller et al. trains various supervised ML algorithms on
EM side-channel emissions from an FPGA program to distinguish between different bitstreams which contain
differences in logic and placement of gates within the FPGA.27
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Across the literature, SVM classifiers are found to be an effective supervised ML algorithm for classification
of EM side-channel emanations. In particular, the linear kernel function for the SVM classifier was found to
deliver good performance across datasets.8,21 Another important aspect of data collection involves preventing
spurious noise sources from becoming trained features in a classifier. Riley et al. approaches this aspect of
training by interleaving the collection of training data to prevent machine learning algorithms from over-training
on background signals.7

4.2 Unsupervised Machine Learning

A major challenge in applying supervised machine learning algorithms is that the input dataset must be labeled.
This creates a problem when working with side-channel emissions data as training data with ground truth labels
is not easily obtainable. Unsupervised machine learning techniques such as clustering algorithms prove useful in
the task of automatically labeling training data. Agrawal et al. utilizes unsupervised machine learning through a
combination of Principle Component Analysis (PCA) and the Density-based Spatial Clustering of Applications
with Noise (DBSCAN) algorithms to cluster emissions together into pseudo-states of device operation. The
resulting clusters are used as the labels for training supervised machine learning algorithms on the underlying
data.21

4.3 Deep Learning

Traditional machine learning techniques can provide high classification accuracy for side-channel signals when
feature vectors are well engineered. In practice, these techniques fall short as environmental changes (noise) and
device-to-device variation challenge even the strongest features. An alternate approach is to utilize deep learning
to learn features directly from the data. Zhou et al. trained Multi-Layer Perceptron (MLP) and Long Short-Term
Memory (LTSM) networks using raw data represented in the time domain or frequency domain, respectively.
The classifiers perform effectively on raw data achieving near 100% accuracy on binary classification problems
and 90% accuracy on multi-class classification problems.2 The effectiveness of deep learning extends beyond
classification as it can be used as a powerful tool for detection of features. Wang et al. proposes the utilization
of deep learning to remove false positive detections of AM modulated spectra. In this instance, deep learning
algorithms can be trained to identify which frequencies are AM spectra and which are not.20

5. ANOMALY DETECTION & CONTROL FLOW TRACKING

5.1 Detection

Following the application of machine learning techniques, it is necessary to detect deviations from normal,
trained program behavior. Statistical analysis is a commonly used technique for detecting anomalies in RF-
based emanations.21,22 Agrawal et al. approaches the detection problem by computing the Mahalanobis distance
between training and testing statistical distributions to declare known or unknown code.21 Nazari et al. also
approaches the detection problem from a statistical standpoint by applying the Kolmogorov-Smirnov test (K-
S test) to detect deviations in the testing behavior from the training behavior.22 These statistical detection
methods work well without known information about devices, but lack the ability to detect out-of-order state
execution.21

A complimentary approach to anomaly detection is to monitor the order of state occurrences to determine
if programs are executing as expected. Agrawal et al. proposes an n-gram detector to monitor label execution
order. N-grams, or contiguous sequences of n states, can be used to represent short sequences of state order
execution. The n-gram detector will indicate when sequences of testing states occur in an order that is not
present in the training data.21 Furthermore, Agrawal et al. discusses a Nondeterministic Finite Automaton
(NFA) which builds a model of all the valid state execution paths. As state labels are predicated, validation can
be performed against the trained NFA model to determine if execution is occurring outside of the trained valid
paths.21

While most detection methods focus on order and distributions of device state outputs, Zhou et al. utilizes an
autoencoder to perform anomaly detection directly on testing data sequences. During training of the autoencoder
network, a sequence of samples is fed into a 5-layer auto encoder. The input and output layers of the network
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have the same number of nodes while a bottleneck is introduced in the middle of the network so that a low-
dimensional representation of the data must be learned. Due to this bottleneck, the network learns how to
reconstruct the original signal from the low-dimensionality data, and an error metric is used to measure how
well reconstruction is performed. Detection can be performed by sending testing data through the network and
flagging data sequences with high reconstruction error as these sequences likely have differing data properties.2

5.2 Control Flow Tracking

Effective detection of increasingly sophisticated malware requires both the identification of device states and state
execution order.21 Program analysis at this granularity requires the creation of a Control Flow Graph (CFG)
which represents all program states and valid transitions between states that may occur between them during
normal program execution. In particular, a colored graph model is considered as measured emissions spectra
are mapped to graph nodes or edges as colors which are not necessarily unique.28 Within CFG theory, there
exist multiple observability classes for colored graph models including Hidden Markov Model (HMM), trackable,
unifilar, and observable. Effective CFG tracking requires an observable graph in which the next state in the
graph can be uniquely determined by a number of previous, consecutive states.29

The prospect of modifying CFG structure to improve EM-based emission tracking performance of processor
behavior has been considered recently in literature.28,29 Chilenski et al. proposes the addition of transition
nodes to CFGs to improve tracking of RF-based processor behavior by reducing tracking performance errors.
By adding transition nodes to the CFG through changing or adding code blocks which are highly observable,
multiple similar branches or sections of a CFG can be uniquely distinguished between in order to identify current
positioning in a CFG.29 Furthermore, a new framework is proposed which can be used to reason how to place
transition nodes to successfully mitigate CFG structures which prevent observability.28

Various forms of CFG tracking are used throughout literature to perform anomaly detection. Graham et
al. describes a block classifier which consists of multiple binary classifiers, each trained on the potential blocks
that a previous known block can transition to.3 Khan takes a similar approach in creating a dictionary of EM
patterns during training which correspond to all possible combinations of branch outcomes that can occur in a
section of a program.30 Finally, the NFA detector proposed by Agrawal et al. builds a CFG from training data
to determine when tested device-states, execute at an invalid time.21 Each of these applications demonstrate
how CFG tracking can be used to aid in the identification of device states and detection of devices operating
anomalously.

6. APPLICATIONS

Recent advances in anomaly detection research have many applications in securing the IoT through wireless
monitoring. Sehatbakhsh et al. extended anomaly detection research to medical applications for monitoring
embedded medical devices. The proposed SYNDROME framework monitors the EM signals from medical devices
and alerts users of statistical deviations from a trained, malware- free model.1 SYNDROME was demonstrated
on an automated syringe pump system in which malware could be detected when being loaded onto the syringe
pump controller. The low-latency detection of the change in device behavior triggered an external shutoff to the
syringe pump to prevent any operational errors.31

Another more-common concern for the IoT is widespread infection of devices with a bot-net or Ransomware.
Sehatbakhsh et al. demonstrates how an embedded IoT device running the Debian Linux operating system can
be monitored with commercial off-the-shelf (COTS) hardware to detect changes in the EM spectrum when an
IoT device becomes infected.32 This change- detection capability is a flexible approach to device monitoring as
the nature of the malicious code does not need to be known for a general change in operation to be identified
and reported. One final selected application from literature is the application of these techniques to RSA key
extraction. Alam et al. presents an approach for utilizing side-channel EM emissions to recover the RSA exponent
bits. A mitigation approach is proposed to fix this vulnerability in which bits are obtained in groups rather than
one bit at time.33
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